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Introduction

Boston Edison Company's (BECo) Large CommercidlUlbtrial Retrofit Program provides
DSM services to approximately 3,000 customers wiffeak demand over 150 kilowatts (kW). The
program operates on two fronts; one for institidlooustomers and one for non-institutional
customers. The incentive levels and incentive qag- (length of time over which the incentive is
paid out to the customer) differ according to thetomer types. The institutional customers include
buildings owned by governments or hospitals thay faae particular financing barriers for making
energy efficiency investments. The non-instituibnustomers include all other large customers,
such as manufacturers, and office buildings.

This program had the highest expected energy gavirom Boston Edison’s demand-side
management (DSM) programs. The importance of thegram and evaluation difficulties
previously experienced due to the unique charatiesi of many of the largest savers created the
need for a more comprehensive impact evaluatioralsd drove the decision to use new analytical
techniques for the billing analysis in this evaioat

The design for this comprehensive impact evaluaithcluded a two-pronged billing analysis
approach combined with a strong engineering armly$he two-pronged billing approach was also
designed to include a high level of disaggregatind attention to detail. Individualized time-serie
econometric regression was used for some of tlgedarenergy and demand savers. Econometric
regression analysis was performed by sector for dtieer participants using an Analysis of
Covariance (ANCOVA) procedure. These methods veeraplemented by a significant level of
examination for potential bias problems and comector these problems when they were found.
This paper will explain these methods and theirartgnce in our findings.

Advantages of the Analysis of Covariance (ANCOVA) Mthodology

Understanding How ANCOVA Fits With Other DSM Billing Analysis Techniques

In order to understand how ANCOVA fits with othB6EM billing analysis techniques, we
divide the typology of methods used into two typesidel specification and parameter estimation.
These are the four general types of economettiiibdpiinalysis specifications versus the regression
type used to estimate the models’ parameters. Wemviding these two typologies so that the
differences between and within them can be betwiderstood. This will allow different
combinations between the two typologies to alsmbexrclearer.
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The general approach for measuring energy saungggram evaluation, is some form of pre
and post billing analysis. There is, however, samefusion with the terms used for the different
types of billing analysis models. There are foemmeyral model types of econometric billing analysis
used for energy impact program evaluations. These

1. Regression Adjusted Billing Analysis;

2. Conditional Demand Analysis (CDA);

3. Change Models; and

4. Statistically Adjusted Engineering (SAE) Models.

There is a variety of billing analysis techniqukat use econometric regression. A pre-post
comparison of utility bills would be all that isaley necessary if no other changes occurred ower th
time period. But this is never the case. At animum, the weather is never exactly the same, and
one of the greatest predictors of energy consumpsowveather. Weather adjustments can occur
within a normal regression analysis framework bgluding weather variables, such as heating
degree days. Another common technique used is NRt&veloped by Dr. Margaret Fels of
Princeton University (Fels, 1986). PRISM perforting billing regression weather adjustment on an
individual customer basis, so that the baselineptgature point of increased heating (or cooling)
usage can be set differently for each customer.

The term conditional demand analysis (CDA) modeaksveoined by Dr. Michael Parti, to
describe a regression in which observed energyucopson is estimated as a function based upon
binary (dummy) variables, for the presence or atseh major end uses (Parti and Parti, 1980). The
resulting coefficients represent the marginal dbaotron, to overall energy use associated with each
end use. This type of regression model is verjulige predicting energy use, and explaining energy
use to customers.

Over time, Dr. Parti, and others have used thiwiteology to represent a wide range of hybrid
models that incorporate program data, change datangineering data. This, along with the fact
that all multiple regressions are inherently cand@él models, has led to some confusion in the
terms used in this field.

In the traditional interpretation of terminology,“Change Model” was different from a CDA
Model. The CDA model is designed to explain enarggs, while a Change Model is designed to
explain changes in energy usage. That means iherelifference in the dependent variable being
explained by the model.

Statistically-Adjusted Engineering (SAE) modelg anodels that incorporate the engineering
estimate of savings, in the regression analysi©ie $AE models were first developed by Dr.
Kenneth Train (Train et al., 1985) as a techniquentlude engineering in the estimation of hourly
end-use energy loads. The term has evolved tadechny energy regression model that includes
engineering estimates (of savings or usage, noymadide prior to installation and referred to as
engineering priors). As used in DSM evaluatiore thgression coefficient for the SAE variable
measures the percentage of the savings estimasesage, actually being obtained. If the billing
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data reveals that the actual savings are greader tthe prior estimates than the SAE regression
coefficient will be greater than one. Analogoushe SAE regression coefficient will be less than
one when the billing analysis finds actual savittgbe less on average than the prior estimates.

The second typology we reference is that of resjpestype (the technique used to estimate the
model’s parameters). In general, there are thretheds of estimation: moments, least squares, and
maximum likelihood (Kmenta, 1971, p. 171-174). ©ndertain sets of assumptions, the estimators
found by these three methods are the same andasestent. However, there are many economic
models in which estimators derived by least squamesinconsistent. The discovery of these
circumstances and models, where least squaresdpsvinconsistent estimators, has led to
techniques that are used with maximum likelihootivegtion to provide consistent estimators. In
fact, the majority of the field of econometricglsvoted to this type of analyses.

Almost all of the non-PRISM econometric billing adysis has been conducted with least
squares estimation methods. Least squares esimragthods include ordinary least squares (OLS)
and generalized least squares. Usually, thesadalmiques produce similar results. Generalized
least squares, as its name implies, is a more gierest statistical equation form that uses maximum
likelihood estimation. There are differences, hesvethat lead to the decision of which technicie i
more appropriate for different circumstances.

OLS, is the most commonly used of these technjcures the easiest to use in most statistical
software packages. It is important that our estimaf the model's coefficients is unbiased
(centered around the correct answer), and consi@teat we would approach the exact population
coefficient as our sample size gets larger). Adicgy to the Gauss-Markov theorem, the best
(minimum variance producing) linear unbiased edimacan be achieved with ordinary least
squares, as long as four assumptions are metiowgever, any of these assumptions is incorrect,
generalized least squares should be used. If,i©lfappropriately used in cases where one of these
assumptions is violated, it will produce an estwnatith greater variance, than generalized least
squares would have produced (e.g., not as accuratere are also common techniques that can be
used along with generalized least squares to ddoecases that violate the OLS assumptions. This
is because the only assumed error structure igeheralized method is that the variance-covariance
matrix of the error terms be multiplicative scatard positive definite (Pinkdyck and Rubinfeld,
1981, pp. 165).

There are a few demand-side management (DSM) avahs (the majority of energy program
evaluations), which have used other econometritnigoes rather than ordinary least squares. One
of these is the Analysis of Covariance (ANCOVA) rabd

Background on the Analysis of Covariance Methodology and Its Usein DSM Evaluations

An Analysis of Covariance (ANCOVA) model measurevariance among categorical
variables. The ANCOVA model is often used as ahoetto address a problem with the error term
(i.e., the error term is not truly random). Thisld of interest decomposes the error term and
examines its pieces with varying assumptions. roftese types of models are divided into random-
effects models (or variance components models¥iaad effects models. Much of the work in this
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field involves providing the appropriate estimattwsdiffering circumstances or assumptions in the
components and relationships of the error termSee(the following articles for more detailed

discussions of this work and its applications: Aigand Hirschberg, 1985; Aigner and Lillard, 1984;
Amemiya and MaCurdy, 1986; Balestra and Nerlov&6l€ornwell and Rupert, 1988; England et
al., 1988; Hausman, 1978; Hausman and Taylor, 198%so, 1985; Lillard and Acton, 1981;

Maddala, 1971; Megdal et al., 1993; Megdal et1&95; Mundlak, 1978; Ozog et al., 1995; Schutte
and Violette, 1994; Sumi et al., 1993; and Walland Hussain, 1969.)

The ANCOVA model has been used in several fietda dixed-effects” model. This involves
an ANCOVA model for a time-series cross-sectionamgle that provides the cross-sectional
differences to be held constant. This type of matflews each individual to act as its own control.
The unique effect of the stable, but unmeasuredactexistics of each customer, are their “fixed-
effects”; from which this method takes its nameedé fixed-effects are held constant. The initial
econometric proposal for this type of model prityacomes from the 1981 work by Hausman and
Taylor that demonstrated how instrumental varialdesld be used to obtain the time-invariant
parameters.

In a cross-sectional time-series' analysis thedstal regression error component is divided into
that which is specific to the cross-sectional egi(i.e., individuals, or customers) and that Wwhig
truly random error. The customer-specific errantes replaced by a customer-specific regression
specification. This customer-specific specificatadlows all the customer-specific component to be
removed from the error, reducing the customer-sigesiror term to zero.

The Analysis of Covariance (ANCOVA) technique ¢esaan estimate of the fixed-effect for
each individual. This is the effect that does vanty over time for an individual and differentiates
that individual from others, apart from the othausal explanatory variables in the regression.s Thi
allows a greater decomposition of effects withtr@ss-section time-series analysis. For this reaso
the ANCOVA or fixed-effects model has been useddemography (Jasso, 1985) to explain
differences in the effects of cohort, marriage cghend marriage length on coital frequency, where
the fixed-effects captured the great variation thaturs across couples. This work’s publication in
the American Sociological Review led to the techiegjuse in labor sociology/economics to explain
occupational sex segregation’s impact on wagestalBdg Farkas, and Barton, 1988. The technique
has also been used in energy to predict customesjsonses to time-of-use pricing (Aigner and
Hirschberg, 1985; and Aigner and Lillard, 1984).

ANCOVA's capturing of the individual-specific effts, in cross-section time-series models,
also radically reduces the noise in most of thesdeats. This comes from the fact that much of what
can not be explained within cross-section timeesemodels involving human behavior are the
unmeasured components that make us each individuBlese features are our “fixed-effects”.
ANCOVA's control of these fixed-effects providesnauch tighter fitting model, reducing the
model’s noise. ltis this feature that makes taehnique so valuable for DSM billing analysis.

This capability of ANCOVA was recognized by Dr.riMegdal while she was simultaneously
leading DSM evaluation efforts at the City of Aastand pursuing her Ph.D. studies under the
guidance of Dr. George Farkas, and Dr. Paula Edglavo of the authors of the England, Farkas,
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and Barton publication mentioned above. The pryngoal of the DSM billing analysis was to
obtain an accurate, clean, estimate of the programpact. The fixed-effects model would provide
usage explanation, such as a CDA model, but coghdficantly reduce model “noise” by removing
customer-specific differences. The ANCOVA tech@gemoves all fixed-effects of the customer.
This means that an ANCOVA model can account fortladl energy usage differences between
customers, every characteristic of their dwellimgl dousehold patterns, not just those measured in
an audit or survey. It does not explain the déferes between customers. Yet, ANCOVA can
provide the cleanest DSM savings estimate by rengoil customer differences from the modeling.

The City of Austin’s use of ANCOVA for DSM billingnalysis was first published in 1992, in
their evaluation of the City’'s Direct Weatherizati®rogram. This work was then included in a
paper describing several techniques developedéd ity of Austin for residential DSM evaluation,
published in the Proceedings of the 1993 Energyluatian Conference: Megdal, Haynes, and
Rammaha, 1993.

Almost simultaneously, Sumi, Oblander, and Schereithdependently discovered the
advantages of using ANCOVA for DSM billing analysés also reported in the 1993 Proceedings of
the Energy Evaluation Conference.

The ANCOVA model is well-suited for DSM evaluatiasing billing analysis. The technique
greatly controls the amount of variance, or noiserhodel is faced with, by being able to refleet th
fact that each customer has a different baseloatifferent response to weather, and a different
pattern of consumption changes over time. Thisaggh also provides for a much closer fit to the
data than most models, and yet, does not rely dineat inclusion of prior consumption to predict
post consumption.

Given these advantages for DSM evaluation, theo#dNCOVA has been spreading rapidly.
After Dr. Megdal joined Cambridge Systematics, sheoduced the technique for use in a
commercial program evaluation, being conducted &ynkridge Systematics, for Puget Sound Power
and Light. This work became part of Hopkins, Weigh and Megdal, 1994. This technique has
now become the standard technique at Cambridgeer8gscs, used in all of Cambridge
Systematics’ econometric billing analysis since tirae. The use of ANCOVA has also been used
by other consultants and utilities: HBRS (Sumi, at, 1993), RCG/Hagler, Baily (Ozog et al.,
1995), Xenergy (Schutte and Violette, 1994), and Biego Gas and Electric Company (Schiffman,
1994). (The Sumi et al., 1993 work is actuallypadom-effects model. Hausman, 1978 pp. 1263,
proves that the fixed-effects estimator and theloam effects estimator should be approximately the
same, if the conditional mean of the fixed-effeaoe term within the general error term is not
correlated with the independent variables in thelehd

There are several ways in which an ANCOVA or “tixeffects” model can be performed. The
customer effects can be captures by dummy varidbtesach customer (with the standard one fewer
dummy variables than number of categories). It amo be accomplished by a first-differences
model, where customer-specific measurements arsuregzhas differences from the mean. These
methods, however, do not produce complete ANCOVAmedors. As such, there is some
documentation that in some circumstances they nmedebe efficient estimators. The easiest
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application method also provides actual ANCOVA restiors. This is the current availability of
using the general linear model (GLM) with an addagzhtification specification for the customer, a
procedure commercially available in S&S

We have made the distinction of two typologies;MD®illing analysis model type, and
regression model type. We have placed ANCOVA asgeession model type. This was done so
that it was easier to understand that ANCOVA isamoglternative to CDA models, change models,
or SAE models. Rather, it is an alternative to ¢inéinary least squares regression model with a
common cross-sectional time-series' error term.is Theans that ANCOVA can be used in
conjunction with DSM billing analysis model type$he ANCOVA model used in Megdal, et. al.,
1993 was a regression adjusted billing analysise ANCOVA being reported in this paper were
performed using an SAE model type.

Our Findings from the Evaluation of BECo’s Large C&I Retrofit Program

Analysis of Covariance (ANCOVA) Results

The ANCOVA modeling was performed by sector (witke largest expected savers removed
for individual analysis). The ANCOVA model frameskaused in the evaluation of BECo’s Large
C&l Retrofit Program was as follows:

Eit = B1Sy + BoWit + BsGit + B4Cit + Bsi + ... + By + &

where:

Eit = Average daily energy consumption for customéirfimonth “t”, from
the billing data, with the consumption for the ibigj cycle, divided by
the number of days in the billing cycle.

Sij = Dummy variable = 1 if customer “” in month “thad installed
measure “J"; = 0, if the conservation measure had yet been
installed. For a SAE model, the measure savingsates would be
included in place of the “1” for the months aftestallation.

Wit = Average weather for customer “i” in month “t”s aefined by that
customer’s billing cycle.

Git = Growth/contraction over time for customer “i” imonth “t”, as
displayed by employment for that customer.

Cit = Characteristics within a sector in month “t” farstomer “i".

Bsi...Bni = For ANCOVA, customer “”, included as own coritfor fixed-effects.

The coefficient adjusts for the customer’s baseyeiss differentiated
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from the usage for the sector based upon the otheables in the
model. Interacted with weather, the coefficienjuats for the
customer’s weather sensitive usage, as differedtiftom the usage
for the group as a whole, based upon the othealias in the model.

B,...Bn = Estimate coefficients.

i = Statistical error term, for unexplained varianneobserved average
daily energy consumption, for customer “i” in mofith

The coefficient of “S” provided either the averadaily consumption savings from the
measures installation, or the percentage of theneagng estimate obtained; depending on whether
a dummy variable is used, or whether all sampléigyants have program engineering estimates
available for all measures installed. If the eegiing estimates were fully available for a sector,
these were used, making the model an SAE model tifpgot available, this ANCOVA model was
a regression adjusted billing analysis.

Modeling was performed for three sectors. Thesewmanufacturing, office, and schools. In
order to simplify this presentation, and keep thpgy of reasonable length, all modeling results are
not presented. Nevertheless, the office resultsgmted in this paper are representative of all our
results. (The results for the manufacturing secéor be found in Megdal et al., 1995.)

The initial (prior to modeling corrections) offieector energy model was a SAE ANCOVA
model for 15 1992 office-sector participants. Aswn in Table 1, this model achieves an R-square
of 0.98 with a t-statistic for the engineering s@ma estimate of 5.40. This model provides a
realization rate for lighting measures of 90 petcefhe customer-specific identification variables
were significant for all customers. The weathefaldes were also statistically significant.

The customer identification coefficients represdrg customer’s baseline consumption for
each customer. The id variables allow the modelajture much of the heterogeneity that is found
in this customer class. This coefficient representseparate intercept for each customer. The id
coefficients are not a pure measure of a custon@ase load. It is the customer’s fixed-effect that
provides the best fitting sector consumption model.

Regression Diagnostics and Corrections

Regression diagnostics were performed on all thdets for this evaluation, regardless of how
“good” the initial modeling results appeared. Rsgion diagnostics are not often performed in
DSM evaluations. These diagnostics should becotaadard practice in DSM evaluations,
especially given our finding of problems discovetiadapparently “good” models with high R-
squares. Our regression diagnostics included:ptiobability that the residuals were normally
distributed; skewness measurement; kurtosis measumte a Pearson’s correlation coefficient
between the residual and the lagged residual; anéxamination of residual plots against the
predicted values, the savings estimate, averagampeategree days, average cooling degree days, and
time.
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Table1 ~ANCOVA Results for the Office Sector’s Emeldsage

R-Square 0.98
Number of Participants 15

Time Period 1/1989 - 10/1993
Number of Observations 540
Variable Coefficient t-Statistic
Lighting savings estimate -0.90 5.40
Average CDD 176.41 7.56
Average HDD 13.98 2.34
ANCOVA Variables

ID variables

ID 1 1,340 5.44
ID 18 2,168 9.07
ID 24 4,225 16.53
ID 25 1,023 4.29
ID 38 3,124 12.12
ID 39 1,899 7.67
ID 42 2,939 12.32
ID 46 40,222 136.41
ID 47 2,851 12.07
ID 48 7,562 31.49
ID 54 6,003 24.81
ID 55 4,995 20.79
ID 58 6,237 26.17
ID 60 3,738 12.37
ID 62 2,255 9.33

Our regression diagnostics found problems in tfieey manufacturing, and school sector
models. As an example, the initial office sectoergy model (presented in Table 1) had significant
problems with heteroscedacity. This was solvedregpting two models, one for one large customer
who had had much of its retrofitted space vacanthan post-period and another model for the
remainder of the sector. The initial model had@bpbility of normally distributed residuals of 71
percent, a skewness measure of 2.43, and a reqthiadhowing one customer with consistently
higher consumption and savings. The correctianvofmodels allowed the sector model to raise the
probability of normally distributed residuals to pércent, and the skewness measure fell from over
two to -0.8. The final office sector model is geted in Table 2. The results from the modeling of
the individual customer pulled from the office s#as given in Table 3.
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Table 2 Final Office Sector Energy Model

R-Square 0.93

Number of Participants 14

Time Period 1/1989 - 10/1993
Number of Observations 504

Variable Coefficient t-Statistic

Lighting savings estimate -0.45 4.63
ANCOVA Variables

ID Variables

All' ID variables achieved statistical significanegh t-statistics ranging from 5.82 through

32.32. The coefficients ranged from 1,569 thro8glv3.

ID Interacted with Average HDD

One-fifth of the interactions with HDD were st#tally significant.

ID Interacted with Average CDD

Almost 80% of the interactions with CDD were stttially significant with coefficients ranging

from 14 through 192.

Table 3  Energy Model for Customer 904468

R-Square 0.47

Number of Participants 1

Time Period 1/1989 - 10/1993
Number of Observations 36

Variable Coefficient t-Statistic
Intercept 37,518.59 21.71
Lighting savings estimate -1.48 1.84
Cooling Degree Days 1,073.69 4.28
Heating Degree Days 102.55 1.61

All of the ANCOVA models achieved high R-squaresl & statistics for the savings estimate.
Nevertheless, we also discovered that these “gaoddels needed to also have regression
corrections made. These corrections found sigmifidifferences in the realization rates achieved
for the savings estimates, proving the importaridais type of examination.
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Conclusions

We have seen how useful analysis of covarianceGJBMA) can be in DSM evaluations using
billing analysis. This regression type can beraraiuable tool to obtain tight fitting models, even
with large DSM patrticipants, the hardest categonpkerforming billing analysis. In fact, ANCOVA
is most important to the performance of billing lges for large C&l customers. ANCOVA
controls for differences between customers. Thris @ontrol for the great amount of heterogeneity
found in this customer class. This may allow fegression-based DSM evaluation where models
may not have previously been able to be fittedwill also greatly reduce the potential of model
biasing problems created by heteroscedasticity.

ANCOVA, however, does not automatically solve pditential modeling problems. Our
regression diagnostics provided evidence that durtbhorrections for heteroscedasticity and
autocorrelation still had to be made in the DSMirml analysis of large C&l customers. Model
corrections were made for these problems and sgnily different findings were obtained. These
corrected models are the proper specificationtfes¢ customers’ billing analyses.
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